Hollow Buffers in U.S. Banking: The Hidden Distribution of Deposit Taxation

Nicholas R. Pusateri

December 9, 2025

JACK WELCH COLLEGE OF BUSINESS & TECHNOLOGY

Motivation

- Since October 2008, the Federal Reserve has paid interest on reserve balances
 - Explicitly intended to remove the implicit tax on deposits imposed by reserve requirements
 - With reserves earning interest, banks have been willing to hold large balances
- Natural conclusion: the classic Bailey-Friedman reserve-requirement tax has disappeared
- This paper cautions against such a strong conclusion

Introduction 1/27

The Puzzle

- Aggregates suggest ample liquidity:
 - System-wide reserves equal 57% of deposits (2024:Q4)
 - Suggests substantial buffers and tax neutrality
- But bank-level data reveal a different story:
 - 30% of deposits sit at banks with less than 10% reserve ratios
 - These banks would face immediate binding constraints if requirements were reinstated

Disconnect between aggregate abundance and cross-sectional scarcity

Introduction 2/27

Research Questions

- 1. When exactly does interest on reserves eliminate the deposit tax?
- 2. Is aggregate reserve abundance sufficient to conclude tax neutrality?
- 3. What are the implications for monetary policy implementation and macroprudential design?

Introduction 3/27

Classic Deposit Taxation Literature

- Bailey (1956), Friedman (1959), Cagan (1956)
 - Reserve requirements impose implicit tax on deposits
 - Tax equals opportunity cost of non-remunerated reserves
 - Welfare costs of reserve taxation
- Tolley (1957), Feinman (1993)
 - History and evolution of reserve requirements
 - Regulatory rationales beyond monetary control
- This paper: Tax remains latent even with IOR

Literature Review 4/27

Interest on Reserves Literature

- Sargent & Wallace (1985), Goodfriend (2002)
 - Paying market rates on reserves eliminates deposit tax
 - Separates liquidity provision from fiscal transfers
 - Optimal monetary policy design
- Fama (1983), Hall (1983)
 - Financial intermediation without reserve taxation
 - Competitive equilibria with interest-bearing reserves
- This paper: Rate condition necessary but not sufficient

Literature Review 5/27

Operating Frameworks & Implementation

- Ennis & Keister (2008), Afonso et al. (2022)
 - Flat reserve demand with IOR
 - Evolution of Fed's implementation framework
 - Ample reserves regime post-2008
- Poole (1968), Baltensperger (1980)
 - Bank reserve management in stochastic models
 - Portfolio choice with reserve constraints
- This paper: Flat demand in aggregate masks cross-sectional heterogeneity

Literature Review 6/27

Reserve Distribution & Segmentation

- Ennis & Wolman (2015), Wong & Zhang (2025)
 - Cross-section of excess reserves
 - Concentration of reserve holdings
 - Distribution across bank types
- Copeland, Duffie, & Yang (2024)
 - Reserves not so ample after all
 - Segmentation and trading frictions
 - System liquidity vs. usable liquidity
- This paper: Hollow buffer creates tax incidence even without segmentation

Literature Review 7/27

Bank Portfolio Responses

- Mitchell (1982), Ahmed (1987)
 - Reserve requirements and portfolio risk
 - Effects on bank lending and asset allocation
- Islam & Koch (2024), Zhang, Wang, & Song (2024)
 - Bank lending responses to reserve policy changes
 - Risk-taking and lending standards
 - Heterogeneous effects across institutions
- This paper: Two-condition test provides cross-sectional mechanism

Literature Review 8/27

Main Contributions

1. Two-condition incidence test:

- Reinterprets Bailey-Friedman deposit tax as margin-activated wedge
- Rate condition: well-known ($i_{RR} \ge i_{MR}$)
- Quantity condition: *newly formalized* ($\Delta \rho \cdot D \leq ER$)

2. Hollow buffer documentation:

- Aggregate buffers overstate tax neutrality for large share of deposits
- Requirements create discontinuous effects at buffer boundaries

3. Policy implications:

- Challenges "ample reserves" characterizations
- Implications for implementation and macroprudential design

Contribution 9/27

Model Setup

- Representative bank with deposits *D* allocated between:
 - Market-earning assets L at return i_{MR}
 - Reserves R remunerated at i_{RR}
- Balance-sheet identity: D = L + R
- Statutory requirement: $R \ge \rho D$
- Excess reserves: $ER = R \rho D$
- Bank maximizes profits:

$$\max_{L,R}\Pi=i_{MR}L+i_{RR}R-i_{D}D$$

Theoretical Framework 10/27

Change in Requirements

- Suppose regulator raises requirement from ρ to ρ + $\Delta \rho$
- Bank must reallocate $\Delta R = \Delta \rho \cdot D$ from L to R
 - But only *after exhausting* ER
- Profit change:

$$\Delta\Pi = -(i_{MR} - i_{RR}) \max\{0, \Delta\rho \cdot D - ER\}$$

• Marginal deposit-tax rate per dollar of deposits:

$$\tau = (i_{MR} - i_{RR})\mathbb{I}\{\Delta \rho \cdot D > ER\}$$

Theoretical Framework 11/27

Main Result: Two-Condition Test

Proposition (Tax Neutrality Conditions)

An increase in reserve requirements imposes no positive implicit tax if and only if

$$i_{RR} \ge i_{MR}$$
 or $\Delta \rho \cdot D \le ER$

- Quantity condition: If increase fits within excess reserves, no reallocation needed
 requirement is neutral
- Tax "turns on" only when both conditions fail

Theoretical Framework 12/27

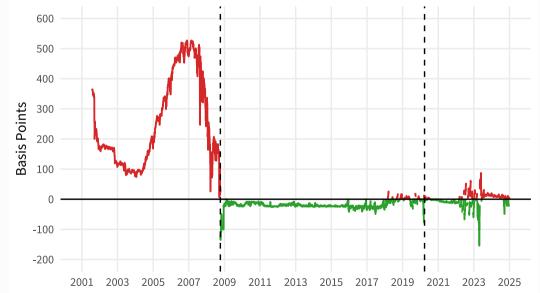
Economic Interpretation

- Two margins govern the result:
 - 1. Rate channel: $i_{RR} \geq i_{MR}$
 - Neutralizes opportunity cost
 - Well-known from Sargent & Wallace (1985), Goodfriend (2002)
 - **2.** Quantity channel: $\Delta \rho \cdot D \leq ER$
 - Neutralizes reallocation need
 - Corresponds to flat reserve-demand (Ennis & Keister 2008)
 - Newly formalized in this paper
- Nests prior views:
 - Bailey-Friedman: $i_{RR} < i_{MR}$ and ER = 0
 - Post-2008 neutrality: rate condition OR quantity condition holds

Theoretical Framework 13/27

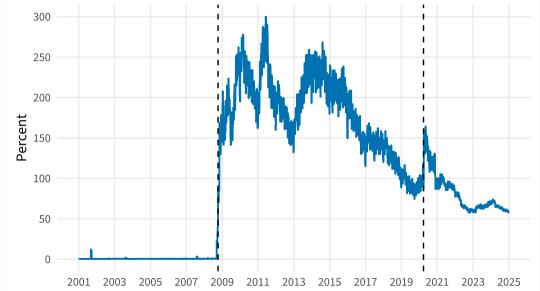
From Aggregates to Banks

- The two-condition test applies at both:
 - System level (aggregate *R*, *ER*, *D*)
 - Individual bank level
- Key insight: Large aggregate buffer can coexist with many banks lacking sufficient buffers
- Incidence is determined at the margin:
 - Banks with $\Delta \rho \cdot D > ER$ face immediate tax
 - Banks with $\Delta \rho \cdot D \leq ER$ remain unaffected
- Creates sharp discontinuity at buffer boundary

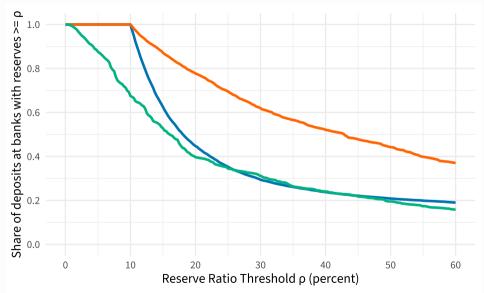

Theoretical Framework 14/27

Data

- Aggregate data: Federal Reserve Bank of St. Louis (FRED)
 - 1-month Treasury yield, total deposits, reserves
 - Interest on reserves rate
 - 2001:Q1 2024:Q4
- Bank-level data: FFIEC Call Reports
 - Quarterly panel of U.S. commercial banks
 - Balance sheet and deposit information
 - Conservative retail bank sample selection
 - 115,835 unique bank-quarters


Empirical Evidence 15/27

Market Premium: $i_{MR} - i_{RR}$


Empirical Evidence 16/27

Aggregate Buffer: ER/D

Empirical Evidence 17/27

The Hollow Buffer: Cross-Sectional Reality

Empirical Evidence 18/27

The Hollow Buffer: Key Finding

- IOR with no requirements (2020–2024):
 - Curve falls below 1.0 almost immediately
 - Roughly 30% of deposits at banks with < 10% reserves
 - Aggregate buffer: 57%
- Implication:
 - Reinstating 10% requirement would impose tax on ~30% of deposits
 - Given positive market premium in much of 2023–2024
 - Both conditions fail for these deposits
- This is the "hollow buffer":
 - Ample in total
 - Scarce for many

Empirical Evidence 19/27

Summary of Empirical Findings

Regime	Rate Condition	Quantity Condition
Pre-IOR (2001–2008)	Fails $(i_{RR} < i_{MR})$	Fails (aggregate) (buffer $pprox 0$)
IOR + Req. (2008–2020)	Holds $(i_{RR} \gtrsim i_{MR})$	Holds (most banks) (buffers built)
IOR, No Req. (2020–2024)	Fails (2023–24) $(i_{RR} < i_{MR})$	Fails (30% deposits) (thin buffers)

• Current regime: *Latent fragility* despite aggregate abundance

Empirical Evidence 20/27

The "Ample Reserves" Paradox

- Federal Reserve's ample reserves framework suggests abundant liquidity
- But: 30% of deposits at banks that would immediately bind
- Current configuration creates stable but brittle equilibrium:
 - Positive market premium
 - Zero requirements
 - Concentrated buffers
- Any policy adjustment triggers cascading effects:
 - Closing rate spread: reduces holding costs, may flatten distribution
 - Reinstating requirements: immediately binds for $\sim 1/3$ of deposits

Redistributing reserves: requires active intervention

Policy Implications 21/27

Heterogeneous Policy Transmission

- Concentration of reserves creates discontinuous effects:
 - Banks with $\Delta \rho \cdot D > ER$: immediate portfolio reallocation
 - Banks with $\Delta \rho \cdot D \leq ER$: unaffected entirely
- Amplifies policy transmission through three channels:
 - 1. Thin-buffer banks must rapidly adjust lending/funding
 - 2. Small requirement/remuneration changes trigger large responses at margin
 - 3. Concentrated incidence makes aggregate outcomes less predictable
- Provides microfoundation for documented heterogeneity in bank responses
 - Islam & Koch (2024), Zhang, Wang, & Song (2024)

Policy Implications 22/27

Design Alternatives

1. Tiered remuneration:

- Pay market rate on required reserves
- Lower/zero rate on excess
- Satisfies rate condition for mandatory holdings
- Eliminates deposit tax even when requirements bind
- Used by several central banks

2. Permanent zero requirements:

- Acknowledges requirements no longer serve monetary control
- But: no mechanism to ensure minimum liquidity across system
- Current voluntary holding produces extreme concentration

May undermine financial stability objectives

Policy Implications 23/27

Macroprudential Perspective

- Current distribution transforms requirements from broad-based tools to targeted interventions
- Whether concentration enhances or diminishes effectiveness depends on objectives:
 - System-wide liquidity provision?
 - Targeted constraints on particular banking models?
- Two-condition framework provides diagnostic:
 - Within buffers or when $i_{RR} \ge i_{MR}$: requirements are merely labels
 - When both fail: requirements become binding taxes
- Policy changes bite first where $\Delta \rho \cdot D > ER$ when $i_{MR} > i_{RR}$

Policy Implications 24/27

Main Takeaways

- 1. **Theoretical:** Reserve requirements neutral only under two conditions:
 - Rate: $i_{RR} \ge i_{MR}$
 - Quantity: $\Delta \rho \cdot D \leq ER$
- 2. **Empirical:** Hollow buffer documented:
 - Aggregate: 57% buffer suggests wide neutrality
 - Cross-section: 30% of deposits would face new tax
- 3. **Policy:** Challenges "ample reserves" characterizations
 - Incidence falls first on thin-buffer banks
 - Discontinuous effects at buffer boundaries
 - Implications for implementation and macroprudential design

Conclusion 25/27

The Bailey-Friedman Tax Redux

- Bailey-Friedman deposit tax reinterpreted as *margin-activated wedge*
- Appeared to vanish after 2008 due to:
 - IOR satisfying rate condition
 - QE satisfying quantity condition
- But remains latent in the cross-section:
 - Dormant at well-buffered banks
 - Active at thin-buffer banks when $i_{MR} > i_{RR}$
- Simple incidence logic with profound implications for:
 - Bank portfolio management
 - Monetary policy implementation
 - Financial stability

Conclusion 26/27

Thank you!

Nicholas R. Pusateri pusaterin@sacredheart.edu

Paper available at: https://nicpusateri.com/hollow

Conclusion 27/27

Formal Derivation: Portfolio Problem

Bank's optimization:

$$\mathcal{L} = i_{MR}L + i_{RR}R - i_DD + \lambda_1(D - L - R) + \lambda_2(R - \rho D)$$

First-order conditions:

$$\frac{\partial \mathcal{L}}{\partial L} = i_{MR} - \lambda_1 = 0 \implies \lambda_1 = i_{MR}$$

$$\frac{\partial \mathcal{L}}{\partial R} = i_{RR} - \lambda_1 + \lambda_2 = 0 \implies \lambda_2 = i_{MR} - i_{RR}$$

- If $i_{RR} < i_{MR}$: $\lambda_2 > 0 \implies R = \rho D$ (constraint binds)
- If $i_{RR} > i_{MR}$: $\lambda_2 = 0 \implies R > \rho D$ (constraint slack)

Appendix 28/27

Data: Retail Bank Sample Selection

- Multi-step filter to focus on genuine retail deposit-takers:
 - 1. Retail footprint: $\geq 1,000$ small accounts or $\geq 30\%$ small deposits
 - 2. Drop trust/custodial markers
 - 3. Drop persistent non-retail profiles
 - 4. Rescue borderline cases with transaction accounts
 - 5. Extra custody drop
 - 6. Name-based exclusions (Ally, Toyota Financial, etc.)
- Final sample: 115,835 unique bank-quarters
- Conservative approach excludes custodial giants and monolines

Appendix 29/27

Reserve Requirement Construction

- Actual reserves: Balances at Fed + vault cash
- Required reserves: Estimated from transaction accounts using Fed's tiered formula:
 - Net of balances due from other institutions
 - Net of cash in process of collection
- Excess reserves: $ER = R \rho D$
- Post-March 2020: $\rho = 0 \implies ER = R$

Appendix 30/27